
Organizational
Patterns

Borrowing ideas from
“agile software development”

David Pritchard
October 10, 2013

Introduction
v  Improving organizations: building, healing, repair and growth

v  Not by processes etc. (the hell of ISO 9000)

v  More situational – capture the good things that organizations
do, write it down as a “pattern”

v  “If you have this problem… try this idea”

v  All of them are small, local ideas – not a huge “this is how to
run the perfect company”

v  The book is about the software industry, but the ideas are more
general

v  In fact – software borrowed the term “pattern” from a famous
architecture / urban planning series

v  Alexander, Ishikawa & Silverstein, “A Pattern Language: Towns,
Buildings, Construction”, 1977

Introduction
v  What did I get from this?

v  Mostly food for thought, ideas to apply

v  Helped me diagnose several problems that I’ve seen on
the job that were done better at previous employers

v  An “aha!” moment when you recognize a problem in
your organization

v  Also, good and evocative “labels” for conversations

v  “let’s encourage Alice to be the ‘Wise Fool’ for the team”

v  “get to a decision – even if it has to happen in a ‘Smoke-
Filled Room’”

v  I’m not going to over-explain this. On to the content…

Introduction
v  Four groups of patterns:

v  Project Management patterns

v  Piecemeal Growth patterns

v  Organizational Style patterns

v  People and Code patterns (specific to software industry)

v  I’ll discuss each group, focusing mostly on the patterns I
found interesting

v  This is just an introduction and overview – see references if
you want to read more

v  Note that I’ve translated software-specific language in a few
places

Project Management
Patterns

Good
Patterns We
Already Do

Community of
Trust

Size the Schedule

Take no Small
Slips

Completion
Headroom

Good
Patterns

Named Stable
Bases

Recommitment
Meeting

Informal Labour
Plan

Work Flows
Inward

Work Episode

Someone Always
Makes Progress

Day Care

More
Patterns

Private World

Don’t Interrupt
an Interrupt

Less
Relevant

Patterns 1

Get on With It

Incremental
Integration

Build Prototypes

Work Split

Work Queue

Development
Episode

Less
Relevant

Patterns 2

Implied
Requirements

Developer
Controls Process

Team Per Task

Sacrifice One
Person

Mercenary
Analyst

Interrupts Unjam
Blocking

Patterns We Already Do
(somewhat)

Community of Trust
•  If: you are building any human organization
• Then: you must have a foundation of trust and respect for effective communications at levels

deep enough to sustain growth

Size the Schedule
•  If: the schedule is too long, staff become complacent; but, if it is too short, they become

overtaxed
• Therefore: reward meeting the schedule, but keep two sets of books

Take No Small Slips
•  If: you are getting behind schedule and need additional time resources
• Then: take one large planned slip instead of allowing yourself to nickel and dime yourself to

death with small, unanticipated slips

Completion Headroom
•  If: work is progressing against a set of hard dates
• Then: make sure there is completion headroom between the completion dates of the largest task

and the hard delivery dates

Good Patterns
Named Stable Bases

•  If: you want to balance stability with progress
• Then: have a hierarchy of named stable bases that people can work against

Recommitment Meeting
•  If: the schedule can’t be met with simple adjustments to the work queue and staffing
• Then: assemble staff and interested managers to recommit to a new strategy based on

doing the minimal amount of work to reach a satisfactory conclusion

Informal Labour Plan
•  If: staff need to do the most important thing now
• Then: let staff negotiate among themselves or “just figure out the right thing to do” as

regards short term plans, instead of master planning

Work Flows Inward
• If: you want information to flow to producing roles in an organization
• Then: put the (Developer?) role in control of the succession of activities

Good Patterns
Work Episode

•  If: you need to split up work across time
•  Then: do the work in discrete episodes with mind share to commit to

concrete deliverables

Someone Always Makes Progress
•  If: distractions constantly interrupt your team’s progress
•  Then: whatever happens, ensure someone keeps moving towards your

primary goal

Day Care
•  If: your experts are spending all of their time mentoring novices
•  Then: put one expert in charge of all novices, let the others do the

main work

More Patterns

Private World
•  If: you want to isolate technical staff from the effects of

changes
•  Then: allow technical staff to have private (virtual) work

spaces containing the entire working (data & software)
environment

Don’t Interrupt an Interrupt
•  If: you’re in the middle of handling an interrupt to keep the

project from getting stuck, and a new urgent need arises
•  Then: continue handling the current issue before moving on

to the new one

Deeper Dive

•  ...non-primary tasks are dominating the team's time, keeping it from moving forward with their primary
goal. There are common complaints of distraction.

• It is important to keep a team moving forward and to avoid getting stuck on the obstacles. You need to
pay attention to every task, including small diverting ones. But you also need to complete the primary task by
an important date.

• Therefore:
Whatever you try, ensure that someone on the team is making progress on the primary task.

• If you do not complete your primary task, nothing else will matter. Therefore, complete that at all costs.
• You can employ one of a broad range of particular solutions and tactics depending on the exact forces to be
resolved. The following specializations are example refinements of this pattern:
• DevelopingInPairs - one person can always take the keyboard.
• TeamPerTask - separate tasks into sympathetic sets.
• SacrificeOnePerson - assign only one person to the distraction.
• DayCare - separate the training task from that of producing software.

• But, in any case, you will always be closer to your final goal -- which is not always the case when dealing with
distractions.

• The psychological effect of this pattern should not be underestimated. If the project is hit with many
distractions, it can be demoralizing to see work grind to a halt. However, any visible progress will help the
entire team stay focused, and will encourage them to get through their particular crisis, so that they too can
once again make progress.

• Carried too far, this pattern might lead you into trouble for not adequately addressing the distractions. But
too many distractions are usually a symptom of some other problem; see, for example,FireWalls.

Someone Always Makes Progress

Deeper Dive

•  ... the project has just brought on several new people.

•  Your experts are spending all their time mentoring novices.
•  You begin to hear things like “We are wasting our experts,” or “A few experts could do the whole

project faster.” Indeed, the experts are not proceeding at the rate you or they would expect, because
training the new people is draining their energy, time and concentration. But the new people must
be trained, by experts, of course.

•  At the same time, you must make progress on the project itself.
•  Therefore:

Put one expert in charge of all the novices, let the others develop the system.

•  Separate an experts-only “progress” team from a training team under the tutelage of one or more
mentors. Select the mentors for their ability to teach design and programming (object-oriented
design and programming, for example) to novices. Let the progress team design 85-95% of the
system, let the training team focus on quality training, delivering only 5-15% part of the system.
Transfer people to the progress team as they become able to contribute meaningfully.

•  Make sure that the training team does not simply do training exercises, but actually contributes to
the final system in an ever-increasing way.

•  If you have many people to train (more than, say, six), you will have to design a series of tasks for
them to attempt. Otherwise you may give them a small, real part of the main system to design.

•  If the people in the training team are the ones who know the domain, you will have to make some
further adjustment, or else the division may cause conflict.

Day Care

Piecemeal Growth Patterns

Patterns
we already

do

Phasing it in

Diverse Groups

Matron Role

Good
Patterns

Size the
Organization

Firewalls

Gatekeeper

Patron Role

Moderate Truck
Number

More
Patterns

Wise Fool

Working in
Pairs

Less
Relevant

Patterns 1

Apprenticeship

Solo Virtuoso

Engage Customers

Surrogate Customer

Scenarios Define
Problem

Self-Selecting Team

Unity of Purpose

Team Pride

Less
Relevant

Patterns 2

Skunkworks

Public Character

Holistic Diversity

Legend Role

Domain Expertise in
Roles

Subsystem by Skill

Compensate Success

Engage Quality
Assurance

Patterns We Already Do
Phasing It In

•  If: you can’t always get the experts you need
•  Then: grow new experts from new hires

Diverse Groups
•  If: everyone has similar views, you have a good team, but too much

normalization leaves important problem areas unaddressed
•  Therefore: assemble a diverse team, based on different experiences,

cultures and genders

Matron Role (Nurturer)
•  If: your team needs ongoing care and feeding
•  Then: include a Matron in the team who will naturally take care of

social needs of the team

Good Patterns 1
Size the Organization

•  If: an organization is too large, communication breaks down, and if it is too
small, it can’t achieve its goals or easily overcome the difficulties of adding
new people.

•  Therefore: start projects with a critical mass of about 10 people

Firewalls
•  If: you want your staff from being interrupted by extraneous influences and

special interest groups,
•  Then: impose a Fire Wall, such as a manager, who “keeps the pests away.”

Gatekeeper
•  If: you need to keep from being inbred
•  Then: use a gatekeeper role to tie together staff ’s work with other projects,

with research, and the outside world.

Good Patterns 2

Patron Role (Sponsor)

•  If: you need to insulate staff so that Staff Control
Process and provide some organizational inertia at the
strategic level,

•  Then: identify a patron to whom the project has access,
who can champion the cause of the project.

Moderate Truck Number
•  If: you can’t eliminate having a single point of failure in

allocating expertise in roles.
•  Then: spread expertise as far as possible, but not more so.

More Patterns

Wise Fool
•  If: critical issues do not get aired easily
•  Then: nurture a Wise Fool to say the things

nobody else dares say

Working in Pairs
•  If: you want to improve the effectiveness of

individual staff
•  Then: have people work in pairs

Organizational Style
Patterns

Patterns
we already

do

Face to Face Before
Working Remotely

Shaping Circulation
Realms

Hallway Chatter

Good
Patterns

Few Roles

Producer Roles

Producers in the
Middle

Stable Roles

Coupling Decreases
Latency

Distribute Work
Evenly

More
Patterns

Form Follows
Function

Responsibilities
Engage

Three to Seven Helpers
Per Role

Less
Relevant
Patterns

Divide and Conquer

Decouple Stages

Conway’s Law

Organization Follows Location

Organization Follows Market

Hub, Spoke and Rim

Move Responsibilities

Upside-Down Matrix
Management

The Watercooler

Patterns We Already Do
Face to Face Before Working Remotely

•  If: a project is divided geographically
•  Then: begin the project with a meeting of everyone in a single place

Shaping Circulation Realms
•  If: you need mechanisms to facilitate the communication structures

necessary for good group formation
•  Then: shape circulation realms

Hallway Chatter
•  If: key staff tend to huddle around the organizational core or

supporting roles are inadequately engaged with each other
•  Then: rearrange responsibilities in a way that encourages less isolation

and more interworking among roles and people

Good Patterns 1
Few Roles

•  If: your organization has high communication overhead and latency
•  Then: identify the roles in the organization, and keep the number of roles

to sixteen or fewer

Producer Roles
•  If: your organization has too many roles, but does not know which to

eliminate
•  Then: identify roles as Producers, Supporters or Deadbeats; eliminate the

Deadbeats and combine some of the Supporters

Producers in the Middle
•  If: your key staff are somewhat lost
•  Then: make sure the producer roles are at the centre of all

communication.

Good Patterns 2
Stable Roles

•  If: you have to deal with project disruptions
•  Then: keep people in their primary roles, and deal with

disruptions as temporary tasks

Coupling Decreases Latency
•  If: you need a high throughput production process.
•  Then: increase coupling between roles to decrease latency

Distribute Work Evenly
•  If: you want to optimize the use of human resources
•  Then: alleviate hot spots of overload on specific groups and

individuals in your organization by Distributing Work Evenly.

More Patterns
Form Follows Function

•  If: there is little specialization, and people don’t know where to turn for
answers to technical questions

•  Then: Create domains of expertise called roles that cluster around artifacts or
specialization

Responsibilities Engage
•  If: central roles are overloaded but you don’t want to take them out of the

communication loop
•  Then: intensify communication more among non-central roles to lighten the

load on the central roles

Three to Seven Helpers Per Role
•  If: you want to even out communication
•  Then: at least try to limit communication to Three to Seven Helpers Per Role,

and to pull up the outliers to the same level of engagement

Deeper Dive

•  ...once you have identified the roles in the organization, you are in a position to
optimize the role structure. This usually involves reducing the number of roles,
particularly for mature organizations.

• The overhead and bureaucracy in the organization is excessive, as manifest by the presence of too many
roles. Yet all the roles seem important. It looks like there is no way to reduce the bureaucracy.

• An organization needs some bureaucracy to keep projects running smoothly; there is much administrative
work to be done. Programmers don't want to bother with it. But left unchecked, bureaucracy tends to grow:
new roles get created and the communication overhead increases.

• People tend to gravitate to those roles they are most comfortable with. This is healthy. However, some people
need the recognition associated with titles (German: Titelsucht), and roles are obligingly created to fill that
need. Such roles have no intrinsic value to the project.

• Over time, the responsibilities of roles evolve. In some cases, the real benefit of a role drains off to other
roles, leaving little more than a shell behind. In one organization, the chief responsibility of a particular role
was "worry." It added no value to the project. But because of the history of the role, it is easy to simply
assume that the role is important.

• Therefore:
Identify each role as a producer, supporter, or roles that add no value to the project (deadbeats).
Eliminate the deadbeats, and in some cases, eliminate or consolidate some supporters. Nurture the
producer roles; they are the ones that pay the bills.

• Producer roles are those roles that contribute directly to the end product; there is an obvious connection
between their work and the revenue of the company. The canonical producer role in software organizations is
"developer".

Producer Roles (1)

Deeper Dive

•  An organization has numerous support roles. These roles contribute to the
effectiveness of the producer roles, but don't directly develop the products. Many support roles are
vitally important, such as FireWalls, GateKeeper, and PatronRole. Roles that provide computing
support, for example, are also essential. But support roles are inherently higher in overhead than
producer roles. There may be opportunities to gain efficiency by combining support roles.

•  Deadbeat roles, as other types of roles, can be identified by their responsibilities. They may do
nothing more than receive information and pass it on without adding any value to it. Watch for
other responsibilities that add no value to the project, such as the aforementioned "worry." If a role
truly adds no value to the project, it should be eliminated.

•  Note that in some cases, a role that passes information adds value by doing so. For example, a
person who passes information by "pushing" it to those who would normally not get the
information may prevent project inconsistencies, or might even detect such inconsistencies before
they get out of hand (see WiseFool). Such a role is an important support role.

•  Although eliminating roles fosters greater organizational efficiency, it may lead to bruised egos, or
even feelings of insecurity. In some cases, roles might be preserved, but reshaped to contribute
more directly to the project. Refer to FormFollowsFunction and ShapingCirculationRealms for
further help.

•  It sets up ProducersInTheMiddle. There is a link to DomainExpertiseInRoles. See
also FireWalls, GateKeeper, and PatronRole.

Producer Roles (2)

Deeper Dive

•  ...the organization has been established, and people have settled into their roles. Communication
tends to be centralized.

•  If communication predominately flows through the center of the organization, two things
happen: communication takes too long, and the most central roles become overburdened with
communication.

•  The most central roles in an organization have the most
information about the project, thus they are the most logical ones
to transmit and receive information. However, they are also the
key producer roles in the organization as well. So time they spend
in communication directly impacts their development productivity.

•  This figure shows an overburdened central role of software
developer:

•  But there must be central coordination (which is a weak form of
control) or some other acceptable point of control. Fully
distributed control tends to lead to control breakdown.
Coordination helps accountability, efficiency, camaraderie, can
reduce decision time for changes in the business environment
(such as requirements changes), and so forth.

•  Therefore:
Shuffle responsibilities among roles in a way such that outer roles collaborate with roles other
than the most central roles.

Responsibilities Engage (1)

Deeper Dive

•  For example, a tester role may be isolated from the project. It would be well for the tester to learn
which areas of the project are especially troublesome, so they can be tested especially rigorously.
But this information is often not forthcoming. The tester could ask the key developers what the
project "hot spots" are, but this would be inefficient and cause bottlenecks.

•  Therefore, give the tester some project management responsibilities, where they actively participate
in status meetings. They will pick up information relevant to testing through the project
management responsibilities.

•  Note that in some cases, moving responsibilities will actually cause roles themselves to migrate,
and even merge. In most cases, that is actually a good thing.

•  This infuses a level of "distributed control with central tendency" that lends overall direction and
cohesion to an organization. It complements DivideAndConquer, both by providing for bonds
within organization clusters and by providing linkages between sub-clusters, linkages less formal
than aGateKeeper role. It adds symmetry to DivideAndConquer.

•  This pattern can stand on its own, but it is nicely completed by the application of HallwayChatter.
•  Laurie Williams notes that DevelopingInPairs achieves some of the same effect. When she uses

this in a pedagogical setting, students learn to rely more on each other and less on the teacher for
answers to common questions.

Responsibilities Engage (2)

People and Code Patterns
Patterns

we already
do

Standards Linking
Locations

Smoke-Filled Room

Good
Patterns

Deploy Along the
Grain

Generics and
Specifics

Code Ownership

More
Patterns

Private Versioning

Stand-Up Meeting

Lock ’Em Up
Together

Less
Relevant
Patterns

Architect Controls Product

Architecture Team

Architect Also Implements

Feature Assignment

Variation Behind Interface

Loose Interfaces

Subclass Per Team

Hierarchy of Factories

Parser Builder

Patterns We Already Do
Standards Linking Locations

•  If: you have geographically separated work
•  Then: use standards to link together parts of the

architecture that cross geographic boundaries

Smoke-Filled Room
•  If: you need to make a decision quickly and there are

reasons to exclude others
•  Then: make the decision covertly so that the rationale

remains private, though the decision will be publicized

Good Patterns
Deploy Along the Grain

•  If: reuse of work is suffering from a fragmentation of responsibilities for an
artefact

•  Then: give people dedicated, long term responsibility for a management piece
of the system

Generics and Specifics
•  If: you have many new people
•  Then: put the experienced people on the generic parts of the work, and give

specific assignments to the new people

Code Ownership
•  If: you need responsibility for code and want to build on Domain Expertise in

Roles,
•  Then: give various individuals responsibility for the overall quality of the code.

More Patterns
Private Versioning

•  If: you want to enable incremental changes without publishing them
•  Then: set up a mechanism for developers to version code without

checking it in to a public repository

Stand-Up Meeting
•  If: there are pockets of misinformation or people out of the loop
•  Then: hold short daily meetings to socialize emerging developments

Lock ’Em Up Together
•  If: your team is struggling to come up with an architecture
•  Then: isolate them physically for several days where they can work

uninterrupted

Closing Thoughts
v  There’s no prize for using the most patterns. Just use

ones that make sense

v  Many of these are ideas that only managers can
implement

References
v  Coplien & Harrison, “Organizational Patterns of

Agile Software Development”

v  Draft version online as PDF:
http://web.archive.org/web/20050514110633/http://
easycomp.info.uni-karlsruhe.de/~jcoplien/HarrisonCoplien.pdf

v  Earlier draft available as web page:
http://orgpatterns.wikispaces.com/BookOutline

v  Thoughts on how this relates to “scrums”:
http://scrum.jeffsutherland.com/2008/02/scrum-and-organizational-
patterns.html
http://jeffsutherland.com/20071029CoplienOrgPats.pdf

